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SUMMARY 

Genome-wide association studies (GWAS) of whole-genome sequence data are used to identify 
causative variants or single nucleotide polymorphisms (SNPs) closely linked to causative variants 
that are associated with traits of interest. SNP associated with causative variants are often not 
included in the standard SNP chips used for routine genomic evaluation, e.g., the Illumina Bovine 
SNP50 chip. Several studies have shown the potential of including pre-selected sequence variants 
(SEQ) in genomic prediction. However, studies integrating such SNPs using a single-step genomic 
prediction model remain limited. A large-scale genome-wide association study of 42 routinely 
evaluated traits was conducted for New Zealand dairy cattle, and 4431 sequence variants were 
selected using an iterative GWAS approach. The current study evaluated the performance of 
genomic prediction by combining pre-selected sequence variants with the standard Illumina 50k 
SNP panel used in the NZ dairy industry in a single-step marker model. Various levels of increased 
ratio of prediction accuracy, decreased dispersion, and increased bias were observed in focal cows 
and bulls for live weight. A clear advantage of including these sequence variants in the model was 
not observed. 
 
INTRODUCTION 

Genomic prediction using single nucleotide polymorphism data relies on the linkage 
disequilibrium (LD) between SNPs and causative variants. In the dairy industry, genomic 
predictions of breeding values have primarily used genotypes from the Illumina Bovine 50k SNP 
panel. However, standard Illumina 50k SNP arrays may not capture causal variants effectively 
because they consist of randomly selected markers chosen mainly for their polymorphism across 
breeds. Rare causal variants may not be in strong LD with the SNPs on these arrays and would have 
little, if any, impact on genomic predictions. In contrast, whole-genome sequence data is expected 
to capture many rare causal variants. Pre-selected sequence variants, either causal or closely linked 
to causal variants, are advantageous for genomic prediction and have been reported in several studies 
(VanRaden et al. 2017; Moghaddar et al. 2019). This study aimed to assess the impact of 
incorporating pre-selected sequence variants into the single-step genomic prediction of live weight 
in the New Zealand dairy population. 

 
MATERIALS AND METHODS 

Data. The population included Holstein-Friesian (HF), Jersey (JER), European Red Dairy 
(RDC) purebred, and Holstein-Friesian Jersey (HFJ) crossbred animals. Animals that didn’t fit the 
above-mentioned groups were categorised as “other” (OTH). Table 1 shows the number of animals 
with live weight phenotypes and genotypes in each breed category. 

Sequence variants selection. The sequence variants were selected from large-scale genome-
wide association studies in New Zealand dairy cattle, which included 42 routinely evaluated traits 
(Wang, unpublished results). A total of 292,667 animals genotyped on various genotype panels were 
imputed to the whole genome sequence level using Beagle 5.4 (B.L. Browning 2018). After 
imputation, variants with a minor allele frequency lower than 0.5% or dosage R-squared lower than 
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0.9 were removed. A total of 16,453,913 variants were retained for the GWAS analysis. In this study, 
we conducted an iterative GWAS analysis in which the most significant variants identified in the 
current iteration were then added as covariates in the next iteration. Such iterations continued until 
no variants that passed the p-value threshold (5×10-8) remained. Using this approach a list of 4799 
variants that were significantly associated with the phenotype was generated. Multiple variants 
selected from different traits have the same locations. Thus, 4431 unique positions were added to 
the current genomic prediction model.  

 
Table 1. Number of animals with live weight phenotype and genotype by breed included in the 
model  
 

Breed Number of animals with 
phenotype 

Number of animals with 
genotype 

Holstein-Friesian 466,513 71,244 
Jersey 208,411 41,150 
Holstein-Friesian Jersey 
cross 638,445 157,618 

European Red  10,255 757 
Other 86,302 15,172 
Total 1,409,926 285,941 

 
Statistical analysis. The single-step marker model is described in Harris (2022): 

y = Xb + ZgMgm + Znun + Za + Zp + e 
where y is the phenotype vector;  𝐗𝐗, 𝐙𝐙𝐠𝐠, 𝐙𝐙𝐧𝐧, and 𝐙𝐙 are the incidence matrices; 𝐛𝐛 is the vector of fixed 
effects, including hybrid vigor, genetic groups, and breed covariates; 𝐌𝐌𝐠𝐠 is the SNP marker matrix, 
where g refers to genotyped animals; 𝐦𝐦 is the vector of SNP marker effects with each column 
centered to have a mean of zero; 𝐮𝐮𝐧𝐧 is the vector of genomic breeding values for non-genotyped 
animals and n refers to non-genotyped animals; 𝐚𝐚 is the vector of polygenic effects; 𝐩𝐩 is the vector 
of permanent effects and 𝐞𝐞 is the random residual effect.  

In this study, we used two sets of SNPs for genomic prediction: (i) filtered Illumina 50k and (ii) 
filtered Illumina 50k and 4431 pre-selected sequence variants. The Linear Regression (LR) 
validation method (Legarra and Reverter 2018) was used to compare the prediction performance 
before and after including the pre-selected sequence variants in the model. The impact of the two 
marker sets on the genomic predictions was assessed using “whole” and “partial” datasets. The 
whole dataset included all available pedigree, genotype, and phenotype information, resulting in 
genomic evaluations that we will refer to as 𝑢𝑢𝑤𝑤. In the partial data set, phenotypes obtained after 
2020-05-31 were removed, and the resulting evaluations will be referred as 𝑢𝑢𝑝𝑝). The whole dataset 
contained 1,995,603 live weight records from 1,409,927 animals, whereas the partial dataset 
contained 1,676,349 records from 1,193,138 animals.  

LR validation statistics were obtained for two focal populations - validation bulls and validation 
cows. The focal population of validation bulls included genotyped bulls with at least 20 daughters 
and records in the whole but not the partial data. The number of daughters per sire ranges from 20 
to 559, with a mean of 97.08. The focal population of validation cows included genotyped cows 
with at least one record in the whole, but no record in the partial data. The number of focal bulls and 
cows in each breed category can be found in Table 2. Due to their poor population representation, 
animals in the RDC and OTH groups were not considered when assessing the genomic prediction 
performance. For both focal populations, prediction performance was evaluated by bias, dispersion, 
and ratio of accuracies calculated from GEBVs obtained from the whole and partial dataset described 
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in the LR method. The bias ∆̂𝑝𝑝 was calculated as the difference between the mean 𝑢𝑢𝑝𝑝 and 𝑢𝑢𝑤𝑤. The 
expected value of the bias is zero (i.e. unbiased). The dispersion 𝑏𝑏𝑝̂𝑝 was calculated as the regression 
coefficient of 𝑢𝑢𝑤𝑤 on 𝑢𝑢𝑝𝑝, which was expected to be one when there is no over- or under-dispersion. 
Values greater than one indicate under-dispersion, and values less than one indicate over-dispersion. 
The correlation between 𝑢𝑢𝑤𝑤 and 𝑢𝑢𝑝𝑝 is an estimator of the ratio of prediction accuracies (𝜌𝜌𝑤𝑤,𝑝𝑝). 

 
Table 2. Number of live weight records for the whole and partial dataset, and the number of 
validation animals per breed  
 

Breed Number of records 
(whole) 

Number of records 
(partial) 

Focal 
Bulls Cows 

Holstein-Friesian 693,439 626,823 327 8,675 
Jersey 298,783 262,074 176 5,968 
Holstein-Friesian Jersey 
cross 877,050 680,383 307 37,123 

European Red  12,627 11,557 - - 
Other 113,703 95,511 - - 
Total 1,995,602 1,676,348 810 51,766 

 
RESULTS AND DISCUSSION 

Ratio of accuracy. Overall, the ratio of accuracy increased to varied degrees in both focal bull 
and cow populations when pre-selected sequence variants were added to the model. JER animals 
had a relatively lower ratio of accuracy compared to HF and HFJ. The ratio of accuracy increased 
from 0.769 to 0.791 for bulls and from 0.844 to 0.854 for cows. After including SEQ variants, the 
ratio of accuracy increased from 0.818 to 0.830 in HOL bulls and 0.854 to 0.861 in HOL cows. For 
HFJ animals, the ratio of accuracy increased from 0.826 to 0.846 in bulls and 0.892 to 0.899 in cows, 
the highest among all breed groups. Standard errors were larger for bulls than for cows using both 
marker sets (Table 3).  
 
Table 3. The ratio of the prediction accuracies (𝝆𝝆𝒘𝒘,𝒑𝒑) for the live weight from validation bulls 
and cows. Standard errors within brackets 
 

Breed Focal Bulls Focal Cows 
Filtered 50k Filtered 50k+SEQ Filtered 50k Filtered 50k+SEQ 

Holstein-Friesian 0.818 (0.032) 0.830 (0.031) 0.854 (0.006) 0.861 (0.005) 
Jersey 0.769 (0.048) 0.791 (0.046) 0.844 (0.007) 0.854 (0.007) 
Holstein-Friesian Jersey cross 0.826 (0.032) 0.846 (0.031) 0.892 (0.002) 0.899 (0.002) 

 
Dispersion. In general, adding the sequence variants resulted in inconsistent changes in the 

dispersion across the breed and focal groups (Table 4). Among all breed groups of focal bulls, HFJ 
had the most unbiased prediction; also, after including SEQ variants, bias decreased from 1.040 to 
1.030. HF had a slight overdispersion with a 0.6% increase in bias after adding SEQ variants. JER 
had a higher overdispersion level, with 0.866 before and 0.868 after SEQ variants were included. In 
contrast, focal cows showed a much smaller dispersion than bulls, which was close to 1 across all 
breeds. Adding sequence variants in the model only resulted in around a 1% change in all breed 
groups.  
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Table 4. Dispersion (𝑏𝑏𝑝̂𝑝 � ) for the live weight from validation bulls and cows. Standard errors 
within brackets 
 

Breed Focal Bulls Focal Cows 
Filtered 50k Filtered 50k+SEQ Filtered 50k Filtered 50k+SEQ 

Holstein-Friesian 0.927 (0.036) 0.921 (0.034) 1.028 (0.007) 1.020 (0.006) 
Jersey 0.866 (0.055) 0.868 (0.051) 0.990 (0.008) 0.979 (0.008) 
Holstein-Friesian Jersey cross 1.040 (0.041) 1.030 (0.037) 1.061 (0.003) 1.053 (0.003) 

 
Bias. Overall, bias was slightly increased after including sequence variants in all scenarios aside 

of HF cows (Table 5). However, in general, the increased level was negligible compared to the 
standard deviation of genetic variance in both bulls (40kg in the “whole” and 37kg in the “partial” 
evaluation) and cows (37kg in the “whole” and 32kg in the “partial” evaluations). Among all breeds, 
the highest bias was observed in JER, where the bias increased from 5.20 to 5.26 for bulls after 
adding sequence variants in the model. For cows, the value increased from 4.04 to 4.27. For all the 
other breed groups, the bias was all under 3.  
 
Table 5. Bias (∆̂𝑝𝑝 ) for the live weight from validation bulls and cows. Standard errors between 
brackets 
 

Breed Focal Bulls Focal Cows 
Filtered 50k Filtered 50k+SEQ Filtered 50k Filtered 50k+SEQ 

Holstein-Friesian 1.800 (0.886) 1.860 (0.860) 0.407 (0.163) 0.352 (0.161) 
Jersey 5.200 (1.010) 5.260 (0.965) 4.044 (0.155) 4.275 (0.153) 
Holstein-Friesian Jersey cross 1.970 (0.920)) 2.340 (0.872) 1.191 (0.076) 1.195 (0.075) 

 
CONCLUSIONS 

Enhancing the standard SNP chip with pre-selected sequence variants for genomic prediction of 
live weight was assessed using changes in the ratio of the accuracies, bias, and dispersion of the 
resulting GEBVs. The changes differed across breeds within the two focus populations but were 
generally small. Overall, the improvements in the estimates were minor, and no clear benefit of the 
sequence variants was found.  
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